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Abstract. We construct an infinitesimal Fourier transformation for the
space of functionals. We extend R to ?( ∗R) under the base of nonstandard
analysis for the construction. The domain of a functional is the set of all inter-
nal functions from a ∗-finite lattice to a ?◦∗-finite lattice with double meanings.
Considering a ?◦∗-finite lattice with double meanings, we find how to treat the
domain for a functional in our theory of Fourier transformation.

Recently many kinds of geometric invariants are defined on manifolds and they are
used for studying low dimensional manifolds, for example, Donaldson’s invariant,
Chern-Simon’s invariant and so on. They are originally defined as Feynman
path integrals in physics. The Feynman path integral is in a sense an integral
of a functional on an infinite dimensional space of functions. We would like to
study the Feynman path integral and the originally defined invariants. For the
purpose, we would be sure that it is necessary to construct a theory of Fourier
transformation on the space of functionals. For it, as the later argument, we
would need many stages of infinitesimals and infinites, that is, we need to put a
concept of stage on the field of real numbers. We use nonstandard analysis to
develop a theory of Fourier transformation on the space of functionals.

Historically, for the theories of Fourier transformations in nonstandard anal-
ysis, in 1972, Luxemburg([L2]) developed a theory of Fourier series with ∗-finite
summation on the basis of nonstandard analysis. The basic idea of his approach
is to replace the usual ∞ of the summation to an infinite natural number N .
He approximated the Fourier transformation on the unit circle by the Fourier
transformation on the group of Nth roots of unity.

In 1988, Kinoshita([K]) defined a discrete Fourier transformation for each
even ∗-finite number H(∈ ∗R) : (Fϕ)(p) =

∑
−H2

2
≤z< H2

2

1
H

exp(−2πip 1
H

z)ϕ( 1
H

z),

called ”infinitesimal Fourier transformation”. He developed a theory for the in-
finitesimal Fourier transformation and studied the distribution space deeply, and
proved the same properties hold as usual Fourier transformation of L2(R).

In 1989, Gordon([G]) independently defined a generic, discrete Fourier trans-
formation for each infinitesimal ∆ and ∗-finite number M , defined by
(F∆,M ϕ)(p) =

∑
−M≤z≤M ∆ exp(−2πip∆z)ϕ(∆z). He studied under which con-

dition the discrete Fourier transformation F∆,M approximates the usual Fourier
transformation F for L2(R). His proposed condition is (A′) of his notation
: let ∆ be an infinitely small and M an infinitely large natural number such
that M · ∆ is infinitely large. He showed that under the condition (A′) the
standard part of F∆,M ϕ approximates the usual Fϕ for ϕ ∈ L2(R). One of
the different points between Kinoshita’s and Gordon’s is that there is the term
∆ exp(−2πip∆M)ϕ(∆M) in the summation of their two definitions or not. We
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mention that both definitions are same for the standard part of the dicrete Fourier
transformation for ϕ ∈ L2(R) and Kinoshita’s definition satisfies the condition
(A′) for an even infinite number H if ∆ = 1

H
, M = H2

2
.

We shall extend their theory of Fourier transformation for the space of func-
tions to a thery of Fourier transformation for the space of functionals. For the
purpose of this, we shall represent a space of functions from R to R as a space of
functions from a set of lattices in an infinite interval

[−H
2
, H

2

)
to a set of lattices

in an infinite interval
[−H′

2
, H′

2

)
. We consider what H ′ is to treat any function

from R to R. If we put a function a(x) = xn(n ∈ Z+), we need that H′
2

is greater

than
(

H
2

)n
, and if we choose a function a(x) = ex, we need that H′

2
is greater than

e
H
2 . If we choose any infinite number, there exists a function of which image is

beyond the infinite number. Since we treat all functions from R to R, we need to
put H′

2
as an infinite number greater than any infinite number of ∗R. Hence we

make
[−H′

2
, H′

2

)
not in ∗R but in ?( ∗R), where ?( ∗R) is a double extension of

R, that is, H ′ is an infinite number in ?( ∗R). First we shall develop an infinites-
imal Fourier transformation theory for the space of functionals, and secondly we
calculate standard two examples for our infinitesimal Fourier transformation.

Formulation.
To explain our infinitesimal Fourier transformation for the space of functionals,
we introduce Kinoshita’s infinitesimal Fourier transformation for the space of
functions. We fix an infinite set Λ and an ultrafilter F of Λ so that F includes
the Fréchet filter F0(Λ). We remark that the set of natural numbers is naturally
embedded in Λ. Let H be an even infinite number where the definition being even
is the following : if H is written as [(Hλ, λ ∈ Λ)] then {λ ∈ Λ |Hλ is even} ∈ F .
Let ε be 1

H
, that is, if ε is [(ελ, λ ∈ Λ)] then ελ is 1

Hλ
. Then we shall define a

lattice space L, a sublattice space L and a space of functions R(L) :
L := ε ∗Z = {εz | z ∈ ∗Z},
L :=

{
εz

∣∣ z ∈ ∗Z, −H
2
≤ εz < H

2

}
= {[(ελzλ), λ ∈ Λ] | ελzλ ∈ Lλ} (⊂ L)

R(L) := {ϕ |ϕ is an internal function from L to ∗C}
= {[(ϕλ, λ ∈ Λ)] |ϕλ is a function from Lλ to C},

where Lλ :=
{
ελzλ

∣∣ zλ ∈ Z, −Hλ

2
≤ ελzλ < Hλ

2

}
.

Kinoshita([K]) introduced an infinitesimal delta function δ(x)(∈ R(L)) and
an infinitesimal Fourier transformation on R(L). From now on, functions in R(L)
are extended to periodic functions on L with the period H and we denote them
by the same notations. For ϕ(∈ R(L)), the infinitesimal Fourier transformation
Fϕ, the inverse infinitesimal Fourier transformation Fϕ, and the convolution of
ϕ, ψ(∈ R(L)) are defined as follows :

δ(x) :=

{
H (x = 0),

0 (x 6= 0),

(Fϕ)(p) :=
∑

x∈L ε exp (−2πipx) ϕ(x), (Fϕ)(p) :=
∑

x∈L ε exp (2πipx) ϕ(x),
(ϕ ∗ ψ)(x) :=

∑
y∈L εϕ(x− y)ψ(y).

He obtained the following equalities as same as the usual Fourier analysis :
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δ = F1 = F1, F is unitary, F 4 = 1, FF = FF = 1,
ϕ ∗ δ = δ ∗ ϕ = ϕ, ϕ ∗ ψ = ψ ∗ ϕ,
F (ϕ ∗ ψ) = (Fϕ)(Fψ), F (ϕψ) = (Fϕ) ∗ (Fψ),
F (ϕ ∗ ψ) = (Fϕ)(Fψ), F (ϕψ) = (Fϕ) ∗ (Fψ).

On the other hand, we obtain the following theorem from his result and an
elementary calculation :

Theorem 1 For an internal function with two variables f : L × L → ∗C and
g(∈ R(L)),

Fx

(∑
y∈L εf(x− y, y)g(y)

)
(p) = {Fy(Fu(f(u, y))(p)) ∗ Fy(g(y))} (p),

where Fx, Fy, Fu are Fourier transformations for x, y, u, and ∗ is the convolu-
tion for the variable paired with y by the Fourier transformation.
Proof. By the above Kinoshita’s result, F (ϕψ) = (Fϕ) ∗ (Fψ). We use it and
obtain the following :

Fx

(∑
y∈L εf(x− y, y)g(y)

)
(p) =

∑
x,y∈L ε exp(−2πipx)εf(x− y, y)g(y)

=
∑

y,u∈L ε2 exp(−2πip(y + u))f(u, y)g(y) (u := x− y)

=
∑

y∈L

(
ε exp(−2πipy)

(∑
u∈L ε exp(−2πpu)f(u, y)

)
g(y)

)
= Fy(Fu(f(u, y))(p) · g(y))(p) = {Fy(Fu(f(u, y))(p)) ∗ Fy(g(y))} (p).

We explain our infinitesimal Fourier transformation for the space of func-
tionals. Let Λ1, Λ2 be infinite sets, and let F1, F2 be ultrafilters on Λ1, Λ2 so
that F0(Λ1) ⊂ F1, F0(Λ2) ⊂ F2 where F0(Λ1) and F0(Λ2) are Fréchet filters
for Λ1, Λ2. We denote the ultraproduct of a set S1 for F1 by ?S1 and the ul-
traproduct of a set S2 for F2 by ∗S2. Then an element of ?(∗S) is written as
[(sλ), λ ∈ Λ1], where sλ ∈ ∗S, sλ = [(sλµ), µ ∈ Λ2], sλµ ∈ S. We use the same
notation [ ] for representing the equivarence classes for both F1 and F2, and
we write the images of s1 ∈ S1, s2 ∈ S2 by the natural elementary embeddings
? : S1 → ?S1, ∗ : S2 → ∗S2, as ?s1,

∗s2, if there is no confusion.
An infinite number in ?(∗R) is defined to be greater than any element in

∗R. We remark that an infinite number in ∗R is not infinite in ?( ∗R), that is,
the word ”an infinite number in ?(∗R)” has double meamings. An infinitesimal
number in ?(∗R) is also defined to be nonzero and whose absolute value is less
than each positive number in ∗R.

Definition 2 Let H(∈ ∗Z), H ′(∈ ?(∗Z)) be even infinite numbers which are
written as [(Hµ), µ ∈ Λ2], [(H ′

λ), λ ∈ Λ1] (H
′
λ = [(H ′

λµ), µ ∈ Λ2]), and let ε(∈
∗R), ε′(∈ ?(∗R)) be infinitesimals satifying εH = 1, ε′H ′ = 1. We define as
follows :

L := ε ∗Z = {εz | z ∈ ∗Z}, L′ := ε′ ?( ∗Z) = {ε′z′ | z′ ∈ ?( ∗Z)},
L :=

{
εz

∣∣ z ∈ ∗Z, −H
2
≤ εz < H

2

}
(⊂ L),

L′ :=
{
ε′z′

∣∣ z′ ∈ ?( ∗Z), −H′
2
≤ ε′z′ < H′

2

}
(⊂ L′).

Here L is an ultraproduct of lattices

Lµ :=
{

εµzµ

∣∣∣ zµ ∈ Z, −Hµ

2
≤ εµzµ < Hµ

2

}
(µ ∈ Λ2)

in R, and L′ is also an ultraproduct of lattices

L′λ :=
{

ε′λz
′
λ

∣∣∣ z′λ ∈ ∗Z, −H′
λ

2
≤ ε′λz

′
λ <

H′
λ

2

}
(λ ∈ Λ1)

in ∗R that is an ultraproduct of
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L′λµ :=
{

ε′λµz
′
λµ

∣∣∣ z′λµ ∈ Z, −H′
λµ

2
≤ ε′λµz

′
λµ <

H′
λµ

2

}
(µ ∈ Λ2).

We define a latticed space of functions X as follows,
X := {a | a is an internal function with double meamings, from ? (L) to L′}

= {[(aλ), λ ∈ Λ1] | aλ is an internal function from L to L′λ},
where aλ : L → L′λ is aλ = [(aλµ), µ ∈ Λ2], aλµ : Lµ → L′λµ.
We define three equivarence relations ∼H , ∼?(H) and ∼H′ on L, ?(L) and L′ :

x ∼H y ⇐⇒ x− y ∈ H ∗Z, x ∼?(H) y ⇐⇒ x− y ∈ ?(H) ?( ∗Z),
x ∼H′ y ⇐⇒ x− y ∈ H ′ ?( ∗Z).

Then we identify L/ ∼H , ?(L)/ ∼?(H) and L′/ ∼H′ as L, ?(L) and L′. Since ?(L)
is identified with L, the set ?(L)/ ∼?(H) is identified with L/ ∼H . Furthermore
we represent X as the following internal set :
{a | a is an internal function with double meamings, from ?(L)/ ∼?(H) to L′/ ∼H′

}.
We use the same notation as a function from ?(L) to L′ to represent a function
in the above internal set. We define the space A of functionals as follows :

A := {f | f is an internal function with double meamings, from X to ?( ∗C)}.
Then f is written as f = [(fλ), λ ∈ Λ1], fλ is an internal function from the set
{aλ | aλ is an internal function from L to L′λ} to ∗C, and fλ is written as fλ =
[(fλµ), µ ∈ Λ2], fλµ : {aλµ : Lµ → L′λµ} → C.

We define an infinitesimal delta function δ(a)(∈ A), an infinitesimal Fourier
transformation of f(∈ A), an inverse infinitesimal Fourier transformation of f
and a convolution of f , g(∈ A), by the following :

Definition 3

δ(a) :=

{
(H ′)( ?H)2 (a = 0),

0 (a 6= 0),

ε0 := (H ′)−( ?H)2 ∈ ?(∗R),
(Ff)(b) :=

∑
a∈X ε0 exp

(−2πi
∑

k∈L a(k)b(k)
)
f(a),

(Ff)(b) :=
∑

a∈X ε0 exp
(
2πi

∑
k∈L a(k)b(k)

)
f(a),

(f ∗ g)(a) :=
∑

a′∈X ε0f(a− a′)g(a′).
We define an inner product on A : (f, g) :=

∑
b∈X ε0f(b)g(b), where f(b) is the

complex conjugate of f(b). Then we obtain the following theorem :

Theorem 4
(1) δ = F1 = F1, (2) F is unitary, F 4 = 1, FF = FF = 1,
(3) f ∗ δ = δ ∗ f = f, (4) f ∗ g = g ∗ f ,
(5) F (f ∗ g) = (Ff)(Fg), (6) F (f ∗ g) = (Ff)(Fg),
(7) F (fg) = (Ff) ∗ (Fg), (8) F (fg) = (Ff) ∗ (Fg).

We define two types of infinitesimal divided differences. Let f and a be
elements of A and X respectively and let b(∈ X) be an internal function whose
image is in ?( ∗Z) ∩ L′. We remark that ε′b is an element of X.

Definition 5
(D+,b f)(a) := f(a+ε′b)−f(a)

ε′ , (D−,b f)(a) := f(a)−f(a−ε′b)
ε′ .

Let λb(a) := exp(2πiε′ab)−1
ε′ , λb(a) := exp(−2πiε′ab)−1

ε′ . Then we obtain the follow-
ing theorem corresponding to Kinoshita’s result for the relationship between the
infinitesimal Fourier transformation and the infinitesimal divided differences :
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Theorem 6
(1) (F (D+,b f))(a) = λb(a)(Ff)(a), (2) (F (D−,b f))(a) = −λb(a)(Ff)(a),
(3) (F (λbf))(a) = −(D−,b (Ff))(a), (4) (F (λbf))(a) = (D+,b (Ff))(a),
(5) (D+,b (Ff))(a) = (F (λbf))(a), (6) (D−,b (Ff))(a) = −(F (λbf))(a),

(7) λb(a) = 2πi
(

sin(πε′ab)
πε′

)
exp(πiε′ab).

Replacing the definitions of L′, F , F , δ in Definition 2 and Definition 3 by the
following, we shall define another type of infinitesimal Fourier transformation.
The different point is only the definition of an inner product of the space of
functions X. In Definition 3, the inner product of a, b(∈ X) is

∑
k∈L a(k)b(k),

and in the following definition, it is ?ε
∑

k∈L a(k)b(k).

Definition 7
L′ :=

{
ε′z′

∣∣ z′ ∈ ?( ∗Z), − ?H H′
2
≤ ε′z′ < ?H H′

2

}
,

δ(a) :=

{
( ?HH ′)( ?H)2 (a = 0),

0 (a 6= 0),

(Ff)(b) :=
∑

a∈X ε0 exp
(−2πi ?ε

∑
k∈L a(k)b(k)

)
f(a),

(Ff)(b) :=
∑

a∈X ε0 exp
(
2πi ?ε

∑
k∈L a(k)b(k)

)
f(a).

In this case, we obtain the same theorems as Theorem 4 and Theorem 6, and the
following theorem corresponding to Theorem 1 :

Theorem 8 For an internal function with two variables f : X × X → ?( ∗C)
and g(∈ A),

Fa

(∑
b∈X ε0f(a− b, b)g(b)

)
(d) = {Fb(Fc(f(c, b))(d)) ∗ Fb(g(b))} (d),

where Fa, Fb, Fc are Fourier transformations for a, b, c, and ∗ is the convolution
for the variable pairing with b by the Fourier transformation.

Examples.
We calculate two examples of the infinitesimal Fourier transformation for the
space A of functionals. Let ? ◦ ∗ : R → ?( ∗R) be the natural elementary
embedding and let st(c) for c ∈ ?( ∗R) be the standard part of c with respect
to the natural elementary embedding ? ◦ ∗. The first is for exp(πi

∑
k∈L

?εa2(k))
and the second is for exp(−π

∑
k∈L

?εa2(k)). We denote the two functionals by
f(a), g(a). If there is an L2-function α(t) on R for a(k) so that a(k) = ?(( ∗α)(k)),

then st(f(a)) = exp
(
πi

∫∞
−∞ α2(t)dt

)
, and st(g(a)) = exp

(
−π

∫∞
−∞ α2(t)dt

)
.

Then we obtain the following results :
Example 1. (Ff)(b) = C1f(b), where C1 =

∑
a∈X ε0 exp(i ?επ

∑
k∈L(a(k)2),

and it is constant,
Example 2. (Fg)(b) = C2(b)g(b), where C2(b) =

∑
a∈X ε0 exp(− ?επ

∑
k∈L(a(k)+

ib(k)2), and if b is a finite valued function then it satisfies that st
(
st

(
C2(b)
C2(0)

))
= 1.
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